Введение в теорию Галуа - семинар 6

20 октября 2025

- (1) Найдите степень поля разложения $X^8 2$ над \mathbb{Q} .
- (2) Посчитайте группы Галуа полей разложения следующих многочленов:
 - (a) $X^3 3X + 1 \in \mathbb{Q}[X]$;
 - (b) $X^3 + 3X + 1 \in \mathbb{Q}[X];$
 - (c) $X^4 4X + 2 \in \mathbb{Q}[X]$, его кубическая резольвента равна $X^3 8X + 16$;
 - (d) $X^4 + 4X^2 + 2 \in \mathbb{Q}[X]$, его кубическая резольвента равна $(X 4)(X^2 8)$;
 - (e) $X^4 10X^2 + 4 \in \mathbb{Q}[X]$, его кубическая резольвента равна (X + 10)(X + 4)(X 4);
 - (f) $X^4 2 \in \mathbb{Q}[X]$, его кубическая резольвента равна $X^3 + 8X$;
- (3) Приведите пример расширения полей E/F степени 4, для которого не существует промежуточного расширения M такого, что $F \subset M \subset E, [M:F] = 2$.
- (4) Полная группа Галуа.
 - (a) Предположим, что транзитивная подгруппа $G \subset S_5$ содержит транспозицию. Докажите, что тогда $G = S_5$.
 - (b) Пусть $P \in \mathbb{Z}[X]$ многочлен степени 5 со старшим коэффициентом 1. Предположим, что P неприводим, и что P имеет ровно два невещественных комплексных корня. Покажите, что тогда группа Галуа поля разложения многочлена P равна S_5 .
 - (c) Докажите, что группа Галуа поля разложения многочлена $P(X) = X^5 4X + 2$ равна S_5 .
- (5) Пусть $f(X) = X^5 + aX + b, a, b \in \mathbb{Q}$. Покажите, что $G_f \approx D_5$ тогда и только тогда, когда выполнены следующие три условия:
 - многочлен f(X) неприводим в $\mathbb{Q}[X]$,
 - дискриминант $D(f) = 4^4 a^5 + 5^5 b^4$ многочлена f(X) является квадратом в $\mathbb{Q}[X]$,
 - группа G_f разрешима (по пока еще не доказанной нами теореме Галуа это равносильно тому, что уравнение f(X) = 0 разрешимо в радикалах).

Подсказка: посмотрите на производную многочлена f и оцените, сколько вещественных корней он может иметь.

- (6) Циклотомические расширения Q.
 - (a) Пусть p простое число, $f \in \mathbb{Z}[X]$ многочлен со старшим коэффициентом 1, такой что многочлен $f \pmod p \in \mathbb{F}_p[X]$ не имеет кратных корней в поле разложения. Покажите, что многочлен f над \mathbb{Q} не имеет кратных корней.
 - (b) Пусть $\mathbb{Q} \subset L$ поле разложения многочлена f из пункта (a), $\alpha \in L$ некоторый корень многочлена f, и пусть P минимальный многочлен элемента α над \mathbb{Q} . Предположим, что $f(\alpha^p)=0$. Докажите, что тогда $P(\alpha^p)=0$.
 - (c) Пусть $\zeta \in \mathbb{C}$ примитивный корень степени n из 1. Покажите, что минимальный многочлен R элемента ζ над \mathbb{Q} обращается в нуль в ζ^p для любого p, взаимно простого с n.

1

- (d) Покажите, что $R(X)=\prod_{i\in(\mathbb{Z}/n\mathbb{Z})^*}\left(X-\zeta^i\right)$. (e) Пусть E это поле разложения многочлена X^n 1. Покажите $\mathrm{Gal}\left(E/\mathbb{Q}\right)$ \simeq $(\mathbb{Z}/n\mathbb{Z})^*$.
- (7) Напишите многочлен, который делится на все неприводимые многочлены степени 3 в $\mathbb{F}_7[X]$.