Введение в теорию Галуа - семинар 2

15 сентября 2025

Пусть F — это подполе \mathbb{R} . Назовем F-прямой прямую в $\mathbb{R} \times \mathbb{R}$ проходящую через две точки, определенные над F. Такие прямые заданы уравнениями

$$ax + by + c = 0$$
, $a, b, c \in F$.

Назовем F-окружностью окружность в $\mathbb{R} \times \mathbb{R}$, центр которой является F-точкой и радиус которой является элементом F. Такие окружности задаются уравнениями:

$$(x-a)^2 + (y-b)^2 = c^2$$
, $a, b, c \in F$

- (1) Пусть $L \neq L'$ это F-прямые и пусть $C \neq C'$ это F-окружности.
 - (a) $L \cap L' = \emptyset$ или состоит из единственной F-точки.
 - (b) $L \cap C = \emptyset$ или состоит из одной или двух точек, определенных над полем $F[\sqrt{e}]$, где $e \in F$ и e > 0.
 - (c) $C \cap C' = \emptyset$ или состоит из одной или двух точек, определенных над полем $F[\sqrt{e}]$, где $e \in F$ и e > 0.
- (2) Вещественное число x называется конструируемым над F, если оно получается как длина некоторого отрезка, который можно построить, проводя F-прямые и F-окружности.
 - (а) Если числа c и d конструируемы, то числа c+d,-c,cd, и $\frac{c}{d}(d\neq 0)$ также конструируемы.
 - (b) Если число c>0 конструируемо, то \sqrt{c} тоже конструируемо.
- (3) (а) Множество конструируемых чисел является полем.
 - (b) Число α является конструируемым тогда и только тогда, когда оно содержится в подполе $\mathbb R$ такого вида:

$$\mathbb{Q}\left[\sqrt{a_1},\ldots,\sqrt{a_r}\right], \quad a_i \in \mathbb{Q}\left[\sqrt{a_1},\ldots,\sqrt{a_{i-1}}\right], \quad a_i > 0.$$

- (4) Если α конструируемо, то α это алгебраическое число над \mathbb{Q} , и $[\mathbb{Q}[\alpha]:\mathbb{Q}]=2^n$ для некоторого $n\in\mathbb{N}$.
- (5) Число $\sqrt[3]{2}$ не является конструируемым над \mathbb{Q} .
- (6) Существуют числа α , для которых невозможно произвести трисекцию угла α с помощью циркуля и линейки.
- (7) (а) Если p простое число, то многочлен $X^{p-1}+\cdots+1$ неприводим. Таким образом, поле $\mathbb{Q}\left[e^{2\pi i/p}\right]$ имеет степень p-1 над \mathbb{Q} .
 - (b) Докажите, что если правильный p-угольник построим¹, то $(p-1)/2=2^k$ для некоторого $k\in\mathbb{N}$.
- (8) Посчитайте $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}].$
- (9) (a) Проверьте, что $\mathbb{Q}(\sqrt{2})$ содержится в $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, и найдите $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}(\sqrt{2})]$.

1

¹Обратное тоже верно, мы это обсудим позже.

- (b) Пусть $K=\mathbb{Q}(\sqrt{2})$. Найдите $[K(\sqrt[3]{2}):\mathbb{Q}]$ и $[K(\sqrt[3]{2}):K]$.
- (10) Пусть ζ некоторый первообразный корень степени n из единицы. Расширение $\mathbb{Q}(\zeta)$ называется **круговым полем**.
 - (a) Найдите степень кругового поля $\mathbb{Q}(\zeta)$, где ζ это первообразный корень степени n из единицы, для n=3,4,5 и 6.
 - (b) Докажите, что степень расширения $[\mathbb{Q}(\zeta):\mathbb{Q}]$ равна функции Эйлера $\varphi(n)$.